We can only speculate as to the reasons for this difference. Management practices will affect the circulation of strains and can differ between some parts of Europe and Australia. The scale of farming operations and relative proportions of the different livestock co- or sequentially grazing may also be a factor. Paratuberculosis is more common in sheep in Australia than in
cattle and the Type I strain is more virulent for sheep than cattle [39]. In this study, Map was isolated from 19 different host species, which included both ruminants and non-ruminants. This is the first report of the isolation of Map from a giraffe. The Type II strains appear to have greater CT99021 ic50 propensity for infecting a broad range of host species whereas the epidemiological data available for Type I strains suggests that they have a preference for sheep and goats [23]. Since our results show that the same profiles are found in isolates from different species, it strongly suggests that strain sharing occurs. Even more convincing was the observation that the same profiles were mTOR inhibitor isolated from wildlife species and domestic ruminants on the same farm. The frequency or ease with which interspecies transmission occurs are unknown entities and require further investigation. Similarly, the
relative risk of transmission from domestic livestock to wildlife or vice versa remains to be determined. All animals in contact with Map contaminated faeces on an infected property Aurora Kinase will contribute to the spread of disease through passive transmission. However, Map infects a variety of wildlife host species that potentially could be reservoirs for infection of domestic livestock and have serious implications for control of paratuberculosis. The role of wildlife reservoirs in the epidemiology of paratuberculosis will depend on a number of factors which need to be taken into consideration when undertaking a risk assessment for interspecies transmission. Although Map can infect many wildlife species,
only wild ruminants and lagomorphs show evidence of disease as determined by the presence of gross or microscopic lesions with associated acid fast bacteria [46]. These wildlife species have the capacity to excrete Map and spread disease to other susceptible species primarily through further faecal contamination of the environment. Potentially, they could constitute wildlife reservoirs. By definition, to constitute a wildlife reservoir the infection would need to be sustained within the species population. Evidence is available for vertical, pseudovertical and horizontal transmission within natural rabbit populations which could contribute to the maintenance of Map infections within such populations [47, 48].