Deficits were
exhibited by all subgroups for acoustic, linguistic and affective dimensions of prosodic analysis. The finding of impairment at the level of the basic acoustic building blocks of prosodic contours and the correlation between acoustic and linguistic prosody performances argue for the involvement of early perceptual mechanisms that cascade to higher levels of prosodic processing in PPA. Whereas prosodic variation in syllables and words typically extends over tens to hundreds of milliseconds, prosodic contours typically extend over hundreds to thousands of milliseconds: the prosodic subtests used here (syllable pairs/word R428 stress vs contour/intonation) might index the processing of prosodic structure over shorter versus longer timescales, respectively. Contour discrimination was significantly more impaired than pair discrimination and intonation discrimination was significantly more impaired than stress discrimination at the phrasal level: this pattern suggests that the representation of longer range prosodic structure may be relatively more vulnerable in PPA. While this pattern might be at least partly attributable to an associated working memory impairment, the
lack of correlation between prosodic and short-term memory and executive performance on most of the tasks argues for an additional specific deficit of receptive prosody in PPA. Within the domain of affective prosody, recognition of certain emotions (in particular, disgust and fear) was relatively more impaired. Comparison of vocal emotion recognition with recognition selleck inhibitor of emotions in another modality (facial expressions) here suggested non-uniform involvement of emotion processing mechanisms between modalities in PPA: recognition of vocal emotions was significantly Venetoclax nmr inferior to recognition of facial expressions in patients (but not healthy controls), and the relative degree of impairment of particular emotions differed for vocalisations versus facial expressions.
Taken together, the data suggest a generic deficit of emotion recognition in PPA, but further suggest that this may be modulated by modality-specific (possibly perceptual) factors. Whereas vocal expressions of emotions such as sadness and surprise can be conveyed vocally from relatively coarse perceptual cues (e.g., large shifts in intensity or pitch), the perception of vocal expressions of other negative emotions is likely to be relatively more dependent on accurate encoding of fine-grained perceptual features ( Juslin and Laukka, 2003 and Hammerschmidt and Jürgens, 2007). Healthy subjects may be better able to exploit discriminatory acoustic features of emotional prosodic utterances, or alternatively, there may be an additional specific deficit in processing particular vocal emotions in PPA: the present data do not resolve this issue. Perception of prosody has been little studied in degenerative disease.