In addition, the distance between two neighboring nanoparticles e

In addition, the distance between two neighboring nanoparticles enhances to 3 to 5 nm. The above phenomena reveal that the shape (pre-spheral) of the Fe3O4 nanoparticles is almost unchanged with Acadesine the oxidation polymerization of ANI and that the thickness of the layer of PANI capped onto the monodispersed Fe3O4 nanoparticles is about 10 to 20 nm, which is nearly equivalent to the thickness of the Fe3O4 cores. Moreover, the PANI/Fe3O4 nanoparticles also maintain the monodispersity like pure Fe3O4 nanoparticles.

Almost no Caspase Inhibitor VI nmr aggregating PANI/Fe3O4 nanoparticles have been detected in the TEM view. The right top inset of Figure 4b also shows that the PANI layer is composed of many smaller irregular PANI particles with a size range of approximately 2 nm, implying that heterogeneous nucleation and epitaxial growth of PANI rather than homogeneous nucleation and formation of separated

PANI particles are dominant during the mild oxidation polymerization of ANI, and this is the crucial factor for successfully preparing monodispersed PANI/Fe3O4 nanoparticles. Figure 4 TEM images of (a) oleic acid-coated Fe 3 O 4 , (b) PANI-capped PANI/Fe 3 O 4 , and (c, d) Ag/PANI/Fe 3 O 4 monodispersed nanoparticles. The insets in (b) and (c, d) show HR-TEM images of PANI/Fe3O4 and the lattice of Ag/PANI/Fe3O4 GSK1210151A chemical structure nanoparticles, respectively. Figure 4c,d shows the morphology of the Ag/PANI/Fe3O4 nanoparticles Phenylethanolamine N-methyltransferase at different TEM views. In the case of Figure 4c, many gray, even dark, pre-spheral particles with a size range of 30 to 50 nm are detected. The color of

the nanoparticles is apparently darker than that of PANI/Fe3O4 nanoparticles, demonstrating the possible formation of Ag/PANI/Fe3O4 nanoparticles. The TEM morphology of the Ag/PANI/Fe3O4 nanoparticles at another view (different district) can be also used to confirm this assumption even if the background of the TEM graph is coarse (see Figure 4d) because the color of the observed nanoparticles is almost dark, originating from the existence of heavy metal Ag. Figure 4d also reveals that the obtained Ag/PANI/Fe3O4 nanoparticles are still monodisperse and that the distance between two particles further increases in comparison with the PANI/Fe3O4 nanoparticles. Furthermore, a high-resolution TEM (HR-TEM) technique is also performed, and the HR-TEM images are shown on the right top inset of Figure 4c,d. As can be seen from the HR-TEM images, obvious lattices originating from Ag are observed. In the lattice structures, the d-space of the (111) lattice is about 0.24 nm, which is the characteristic of Ag [22–24]. In addition, the HR-TEM images show that there are transitional layers between the lattice fringes of Ag and the PANI/Fe3O4 nanoparticles.

Comments are closed.