carbonum and A. jesenskae The percent amino acid identity of the proteins of TOX2 and AjTOX2 range from 58%
(TOXE) to 85% (TOXF), with an average of 78.3 ± 8.3% (Table 1). In order to put this degree of relatedness in evolutionary context, we calculated the degree of amino acid identity of a set of housekeeping proteins common to most or all Dothideomycetes. The genes chosen for comparison were ones that have been characterized in C. carbonum and for which full-length orthologs were found in the partial A. jesenskae genome survey. The four housekeeping proteins ranged in identity from 76% to 96%, with an average of 84.2 ± 8.5% (Table 2). This is slightly more conserved than the TOX2 genes, but this difference is not statistically this website significant. Table 2 Comparison of amino acid identities
of housekeeping proteins in C. carbonum and A. jesenskae Protein, gene name, and GenBank accession number (inC. carbonum) Amino acid identity (%) betweenC. carbonumandA. jesenskae Cellobiohydrolase, CEL1, AAC49089 85 Exo-β1,3 glucanase, EXG1, AAC71062 76 Glyceraldehyde 3-phosphate dehydrogenase, AAD48108 96 Endo-α1,4-polygalacturonase, PGN1, AAA79885 76 protein kinase, SNF1, AAD43341 88 Virulence of A. jesenskae HC-toxin is an established virulence factor for C. carbonum, but any possible adaptive advantage it might confer on A. jesenskae is unknown. Although A. jesenskae was isolated from seeds of Fumana procumbens (it HDAC inhibitor has not been isolated a second time from any source), it is not known if A. jesenskae is a pathogen of F. procumbens or any other plant. However, a number of species of Alternaria are plant pathogens, and specific secondary metabolites (i.e., host-selective toxins) are critical determinants of the host range and high virulence of some species and strains of this genus [3, 4]. In order to test whether HC-toxin has
a virulence function in A. jesenskae, several plant species were inoculated with it. In Arabidopsis, a wild type line (Columbia), a pad3 mutant, which has enhanced susceptibility to Alternaria brassicicola[28], and a quadruple DELLA mutant, which also shows enhanced susceptibility to necrotrophic Baricitinib pathogens such as A. brassicicola[29], were tested. In no case case did A. jesenskae cause any visible symptoms of disease (Figure 5A and data not shown). A. jesenskae also failed to produce any symptoms on cabbage (Figure 5B) or on maize of genotypes hm1/hm1 or HM1/HM1 (Figure 5C). Possible explanations for the failure of A. jesenskae to colonize hm1/hm1 maize is that it cannot penetrate the leaves or that it does not produce HC-toxin while growing on maize. A. jesenskae was also tested for pathogenicity on F. procumbens seedlings. Under conditions of high humidity, profuse saprophytic growth was observed and most of the plants died by week 2 (Figure 5D). In some experiments, some minor symptoms of disease (i.e.