The animals were sacrificed in a CO2 chamber according to recomme

The animals were sacrificed in a CO2 chamber according to recommendations of COBEA. Liver and spleen samples were processed for a) direct mycological microscopy in wet mount preparations with 10% KOH; b) culture by inoculation onto Sabouraud

2% glucose agar medium DIFCO® with and without cycloheximide; and c) preservation in 10% formalin for histopathological study. Control animals were not inoculated, but were maintained in a separate cage and subsequently submitted to the same protocol as the inoculated animals. This method is considered the gold standard for the isolation and identification of culture isolates suspected of being C. immitis or C. posadasii. DNA extraction from soil The DNA was obtained using the Fast DNA® SPIN® Kit for soil (Q-BIOgene, www.selleckchem.com/products/bmn-673.html Carlsbad, CA, USA) following the manufacturer’s

instructions. Soil DNA was analyzed by electrophoresis in 0.8% (w/v) agarose gels in Tris-Borate-EDTA buffer as well as in a spectrophotometer at 260 nm absorbance (Beckman DU-600) to check its amount, purity and molecular size. Final DNA obtained from soil samples had large molecular length (> 10 kb) and the humic acids contamination was not observed in electrophoresis gel. Therefore, DNA samples could be used as template to amplify 28S rDNA by PCR. DNA extracts were amplified by Polymerase chain reaction (PCR) using 1 μl of the extract (5 to 10 ng of DNA g soil-1) per 50 μl of reaction. Characterization of soil-extracted DNA Soil-extracted DNA was amplified using the universal primers {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| Methane monooxygenase U1 and U2, which amplify a 260-bp

product of a subunit of 28S fungal rDNA, to demonstrate the absence of PCR inhibitors and the presence of fungi in the sample, as described previously [18]. A negative control without DNA was included in all amplifications. DNA extraction from clinical and environmental isolates of Coccidioides spp DNA of 21 clinical and environmental isolates of Coccidioides spp. was included in this study. From the Fungal Culture Collection at IOC/FIOCRUZ, six were identified as C. immitis (USA) and two as C. posadasii (Argentina); thirteen (nine clinical and four environmental) isolates identified as C. posadasii from Piauí/Brazil were preserved at the Laboratory of Mycology at IPEC/FIOCRUZ [19]. DNA of other species of fungi and bacteria DNA of several species of fungi (41) and bacteria (3) were included in the study: Sporothrix schenckii (5); Paracoccidioides brasiliensis (5); Histoplasma capsulatum (2); Aspergillus niger (3); Aspergillus fumigatus (3); Aspergillus nidulans (3); Blastomyces dermatitidis (1); Microsporum canis (1); Trichophyton rubrum (1); Trichophyton mentagrophytes (1); Cryptococcus neoformans (6); C. gattii (10); Rhodococcus equi (1); Mycobacterium avium (1); and Paenibacillus sp. strain 9500615. The isolates were preserved at the Laboratory of Mycology at IPEC/FIOCRUZ or obtained from soil samples preserved at the Laboratório de Ecologia Microbiana Molecular of IMPPG/UFRJ.

Comments are closed.