For the PC measurements, the incident light, namely, the infrared (IR) beam from the FTIR spectrometer, was perpendicular to the mesa upper surface; and for our structure on the mesa upper surface, the area exposed to the light occupies about 75% of the total area. Results and discussion Figure 1a gives the scheme of selleckchem one unit of coupled QDs lasing layers in one period.
Figure 1b shows the atomic force microscopy (AFM) image of one-period QDCL with another unit of coupled QDs lasing layers (indicated by the dashed rectangle in Figure 1a) on top. The average diameter of QDs is about 30 nm, with a height of 2.5 nm. The entire structural quality of the QDCL wafer was confirmed by the X-ray diffraction (XRD) spectrum as shown in Figure 1c. In the XRD simulation, we treated the QD layer as a two-dimensional InAs layer with a homogeneous thickness corresponding to the nominal deposit amount, which was
strained biaxially to match the lattice constant of InP. The experimental zeroth peak shows a nearly perfect lattice match to the InP substrate, which demonstrates that the active region layers have been properly strain-balanced to give a net zero strain. The accurate match of the simulated curve and the experimental curve shows an extremely good control Dinaciclib over the growth parameters across the entire 30-period layer sequences. The cross-sectional view of transmission electron microscopy (TEM) images of a portion of the 30-period QDCL shown in Figure 2a,b gives the direct and clear evidences of distinct coupled QDs layers in the active core. What is more, the X-ray energy dispersion spectra (EDS) result obtained along cross section line of coupled QDs layers gives indium contents at different points. The ‘star’ represents the discrete data point of X-ray energy dispersion spectrum at each position along cross section line (Figure 2b) of coupled QDs layers of the TEM sample. Based on the finite scattered experimental Miconazole data points, we sketch the continuous curve of indium composition along cross
section line with periodic oscillation characteristic. The periodic oscillation characteristic of indium relative contents as shown in Figure 2c gives the additional evidence of QDs in the active region. This result is consistent with the AFM one. Figure 2 TEM image and EDS results. (a) TEM image of a portion of the cleaved cross section of a QDCL active region. (b) The enlargement image of a portion of Figure 2a for clarity, and the white line gives a clear indication of QDs distribution parallel to the growth layer. (c) Indium relative content along the indicated white line in Figure 2b measured by X-ray energy dispersion spectra. A schematic conduction band diagram of one period of the active layers is shown in Figure 3a. The design computation is based on 1D Schroedinger equation of envelope function approximation from the point of view of simplicity.